Recent work in hydrocarbon reservoir monitoring has focused on developing coupled geomechanical/fluid-flow simulations to allow production-related geomechanical effects, such as compaction and subsidence, to be included in reservoir models. To predict realistic time-lapse seismic signatures, generation of appropriate elastic models from geomechanical output is required. These elastic models should include not only the fluid saturation effects of intrinsic, shape-induced, and stress-induced anisotropy, but also should incorporate nonlinear stress-dependent elasticity. To model nonlinear elasticity, we use a microstructural effective-medium approach in which elasticity is considered as a function of mineral stiffness and additional compliance is caused by the presence of low-aspect ratio displacement discontinuities. By jointly inverting observed ultrasonic P- and S-wave velocities to determine the distribution of such discontinuities, we assessed the appropriateness of modeling them as simple, planar, penny-shaped features. By using this approximation, we developed a simple analytical approach to predict how seismic velocities will vary with stress. We tested our approach by analyzing the elasticity of various sandstone samples; from a United Kingdom continental shelf (UKCS) reservoir, some of which display significant anisotropy, as well as two data sets taken from the literature.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.