ABSTRACT

We have developed a pseudoelastic wave equation describing pure pressure waves propagating in elastic media. The pure pressure-mode (P-mode) wave equation uses all of the elastic parameters (such as density and the P- and S-wave velocities). It produces the same amplitude variation with offset (AVO) effects as PP-reflections computed by the conventional elastic wave equation. Because the new wave equation is free of S-waves, it does not require finer grids for simulation. This leads to a significant computational speedup when the ratio of pressure to S-wave velocities is large. We test the performance of our method on a simple synthetic model with high-velocity contrasts. The amplitude admitted by the pseudoelastic pure P-mode wave equation is highly consistent with that associated with the conventional elastic wave equation over a large range of incidence angles. We further verify our method’s robustness and accuracy using a more complex and realistic 2D salt model from the SEG Advanced Modeling Program. The ideal AVO behavior and computational advantage make our wave equation a good candidate as a forward simulation engine for performing elastic full-waveform inversion, especially for marine streamer data sets.

You do not currently have access to this article.