We have formulated the Fréchet kernel computation using the adjoint-state method based on a fractional viscoacoustic wave equation. We first numerically prove that the 1/2- and the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we find that the adjoint wave propagator preserves the dispersion and compensates the amplitude, whereas the time-reversed adjoint wave propagator behaves identically to the forward propagator with the same dispersion and dissipation characters. Without introducing rheological mechanisms, this formulation adopts an explicit Q parameterization, which avoids the implicit Q in the conventional viscoacoustic/viscoelastic full-waveform inversion (Q-FWI). In addition, because of the decoupling of operators in the wave equation, the viscoacoustic Fréchet kernel is separated into three distinct contributions with clear physical meanings: lossless propagation, dispersion, and dissipation. We find that the lossless propagation kernel dominates the velocity kernel, whereas the dissipation kernel dominates the attenuation kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-difference method, we conduct a numerical example to demonstrate the capability of the kernels to characterize the velocity and attenuation anomalies. The kernels of different misfit measurements are presented to investigate their different sensitivities. Our results suggest that, rather than the traveltime, the amplitude and the waveform kernels are more suitable to capture attenuation anomalies. These kernels lay the foundation for the multiparameter inversion with the fractional formulation, and the decoupled nature of them promotes our understanding of the significance of different physical processes in Q-FWI.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.