Seismic images can be viewed as photographs for underground rocks. These images can be generated from different reflections of elastic waves with different rock properties. Although the dominant seismic data processing is still based on the acoustic wave assumption, elastic wave processing and imaging have become increasingly popular in recent years. A major challenge in elastic wave processing is shear-wave (S-wave) velocity model building. For this reason, we have developed a sequence of procedures for estimating seismic S-wave velocities and the subsequent generation of seismic images using converted waves. We have two main essential new supporting techniques. The first technique is the decoupling of the S-wave information by generating common-focus-point gathers via application of the compressional-wave (P-wave) velocity on the converted seismic data. The second technique is to assume one common VP/VS ratio to approximate two types of ratios, namely, the ratio of the average earth layer velocity and the ratio of the stacking velocity. The benefit is that we reduce two unknown ratios into one, so it can be easily scanned and picked in practice. The PS-wave images produced by this technology could be aligned with the PP-wave images such that both can be produced in the same coordinate system. The registration between the PP and PS images provides cross-validation of the migrated structures and a better estimation of underground rock and fluid properties. The S-wave velocity, computed from the picked optimal ratio, can be used not only for generating the PS-wave images, but also to ensure well registration between the converted-wave and P-wave images.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.