Conventional full-waveform inversion (FWI) aims at retrieving a high-resolution velocity model directly from the wavefields measured at the sensor locations resulting in a highly nonlinear optimization problem. Due to the high nonlinearity of FWI (manifested in one form in the cycle-skipping problem), it is easy to fall into local minima. Considering that the earth is truly anisotropic, a multiparameter inversion imposes additional challenges in exacerbating the null-space problem and the parameter trade-off issue. We have formulated an optimization problem to reconstruct the wavefield in an efficient matter with background models by using an enhanced source function (which includes secondary sources) in combination with fitting the data. In this two-term optimization problem to fit the wavefield to the data and to the background wave equation, the inversion for the wavefield is linear. Because we keep the modeling operator stationary within each frequency, we only need one matrix inversion per frequency. The inversion for the anisotropic parameters is handled in a separate optimization using the wavefield and the enhanced source function. Because the velocity is the dominant parameter controlling the wave propagation, it is updated first. Thus, this reduces undesired updates for anisotropic parameters due to the velocity update leakage. We find the effectiveness of this approach in reducing parameter trade-off with a distinct Gaussian anomaly model. We find that in using the parameterization vh,η, and ϵ to describe the transversely isotropic media with a vertical axis of symmetry model in the inversion, we end up with high resolution and minimal trade-off compared to conventional parameterizations for the anisotropic Marmousi model. Application on 2D real data also indicates the validity of our method.

You do not currently have access to this article.