We have developed a novel Kantorovich-Rubinstein (KR) norm-based misfit function to measure the mismatch between gravity-gradient data for the inverse gradiometry problem. Under the assumption that an anomalous mass body has an unknown compact support with a prescribed constant value of density contrast, we implicitly parameterize the unknown mass body by a level-set function. Because the geometry of an underlying anomalous mass body may experience various changes during inversion in terms of level-set evolution, the classic least-squares (L2-norm-based) and the L1-norm-based misfit functions for governing the level-set evolution may potentially induce local minima if an initial guess of the level-set function is far from that of the target model. The KR norm from the optimal transport theory computes the data misfit by comparing the modeled data and the measured data in a global manner, leading to better resolution of the differences between the inverted model and the target model. Combining the KR norm with the level-set method yields a new effective methodology that is not only able to mitigate local minima but is also robust against random noise for the inverse gradiometry problem. Numerical experiments further demonstrate that the new KR norm-based misfit function is able to recover deep dipping flanks of SEG/EAGE salt models even at extremely low signal-to-noise ratios. The new methodology can be readily applied to gravity and magnetic data as well.

You do not currently have access to this article.