The stable implementation of the perfectly matched layer (PML), one of the most effective and popular artificial boundary conditions, has attracted much attention these years. As a type of low-dispersive and symplectic method for solving seismic wave equations, the nearly-analytic symplectic partitioned Runge-Kutta (NSPRK) method has been combined with split-field PML (SPML) and convolutional complex-frequency shifted PML (C-CFS-PML) previously to model acoustic and short-time elastic wave modelings, not yet successfully applied to long-time elastic wave propagation. In order to broaden the application of NSPRK and more general symplectic methods for second-order seismic models, we formulate an auxiliary differential equation (ADE)-CFS-PML with a stabilizing grid compression parameter. This includes deriving the ADE-CFS-PML equations and formulating an adequate time integrator to properly embed their numerical discretizations in the main symplectic numerical methods. The resulting (N)SPRK+ADE-CFS-PML algorithm can help break through the constraint of at most second-order temporal accuracy that used to be imposed on SPML and C-CFS-PML. Especially for NSPRK, we implement the strategy of neglecting the treatment of third-order spatial derivatives in the PML domain and obtain an efficient absorption effect. Related acoustic and elastic wave simulations illustrate the enhanced numerical accuracy of our ADE-CFS-PML compared with SPML and C-CFS-PML. The elastic wave simulation in a homogeneous isotropic medium shows that compared to NSPRK+C-CFS-PML, the NSPRK+ADE-CFS-PML is numerically stable throughout a simulation time of 2 s. The synthetic seismograms of the 2D acoustic SEG salt model and the two-layer elastic model demonstrate the effectiveness of NSPRK+ADE-CFS-PML for complex elastic models. The stabilization effect of the grid compression parameter is verified in the final homogeneous isotropic elastic model with free-surface boundary.

You do not currently have access to this article.