ABSTRACT

Quasi-P (qP)-wave separation and receiver-side records back extrapolation are two key technologies commonly applied in vertical transverse isotropic (VTI) media for ocean-bottom 4C seismic data pseudoacoustic-wave reverse time migration (RTM). However, it remains problematic to quickly and accurately separate the qP-wave in VTI media. The qP-wave can be fast separated by synthesizing pressure in weakly anisotropic media. Like the derivation of acoustic-elastic coupled equations (AECEs) in an isotropic medium, novel AECEs can also be obtained in VTI media. Based on these novel coupled equations, we have developed a method for pseudoacoustic-wave RTM of ocean-bottom 4C seismic data. Three synthetic examples are provided to illustrate the validity and effectiveness of our method. The results indicate that our method possesses three advantages for ocean-bottom 4C data compared with the conventional method when conducting pseudoacoustic-wave RTM in VTI media. First, these new coupled equations are able to obtain a qP-wave during wavefield propagation. Second, ocean-bottom 4C records can be implemented strictly for receiver-side tensorial extrapolation with undulating topography of the seafloor, which brings benefits for suppressing artifacts in pseudoacoustic-wave RTM and improving imaging quality. Finally, our method is fairly robust to coarse sampling.

You do not currently have access to this article.