Dike swarms are igneous structures of continental expression accounting for major episodes of magmatism in igneous provinces, mantle plume heads, and continental breakup. In regional magnetic maps, dike swarms are recognized by high-amplitude lineaments indicative of lengthy and juxtaposed magnetized bodies. High-anomaly amplitudes from such tabular (2D) bodies tend to obscure lower amplitude contributions from localized 3D sources, representative of magmatic structures that once served as magma plumbing and storage. The recognition of such subtle signals with conventional filtering techniques is prevented due to spectral overlapping of individual contributions. We have developed a processing scheme to remove contributions from elongated, homogeneous sources to make clear contributions from 3D sources located below, in the middle of, or above a framework of elongated homogeneous sources. The canceling of 2D fields is accomplished by evaluating the horizontal component of the magnetic anomaly along the lineament strike, which for true elongated and homogeneous sources gives a null response. The gradient intensity of the transformed field is then evaluated to enhance residual fields over 3D sources. Lineaments thus removed identify tabular bodies with homogeneous magnetization, interpreted as being indicative of the uniform distribution (mineral type, concentration, and grain-size distribution) of magnetic carrier content in the rock. We evaluated our technique with synthetic data from multiple 2D-3D interfering sources and then applied it to interpret airborne data from the Ponta Grossa Dike Swarm of the Paraná-Etendeka Magmatic Province in Southeastern Brazil.

You do not currently have access to this article.