In mineral exploration and geologic mapping of igneous and metamorphic terranes, the background is often dominantly resistive. The most important electromagnetic interaction is between a discrete conductor and an overlying sheet of conductive overburden (e.g., glacial clays or weathering products of the basement rocks). To enable the electromagnetic modeling of these common situations, here I provide closed-form expressions for the approximate electromagnetic response of a sphere embedded in highly resistive rocks and interacting with an overlying thin sheet. The sphere is assumed to be dipolar and excited by a locally uniform field. The expressions in the time and frequency domains are represented as sums of complete and incomplete cylindrical functions. New asymptotic approximations are provided for the efficient evaluation of the required incomplete cylindrical functions. The frequency-domain formulas are validated by numerical transformation to the time domain and comparison to the time-domain solution.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.