Given the noise-corrupted seismic recordings, blind deconvolution simultaneously solves for the reflectivity series and the wavelet. Blind deconvolution can be formulated as a fully perturbed linear regression model and solved by the total least-squares (TLS) algorithm. However, this algorithm performs poorly when the data matrix is a structured matrix and ill-conditioned. In blind deconvolution, the data matrix has a Toeplitz structure and is ill-conditioned. Accordingly, we develop a fully automatic single-channel blind-deconvolution algorithm to improve the performance of the TLS method. The proposed algorithm, called Toeplitz-structured sparse TLS, has no assumptions about the phase of the wavelet. However, it assumes that the reflectivity series is sparse. In addition, to reduce the model space and the number of unknowns, the algorithm benefits from the structural constraints on the data matrix. Our algorithm is an alternating minimization method and uses a generalized cross validation function to define the optimum regularization parameter automatically. Because the generalized cross validation function does not require any prior information about the noise level of the data, our approach is suitable for real-world applications. We validate the proposed technique using synthetic examples. In noise-free data, we achieve a near-optimal recovery of the wavelet and the reflectivity series. For noise-corrupted data with a moderate signal-to-noise ratio (S/N), we found that the algorithm successfully accounts for the noise in its model, resulting in a satisfactory performance. However, the results deteriorate as the S/N and the sparsity level of the data are decreased. We also successfully apply the algorithm to real data. The real-data examples come from 2D and 3D data sets of the Teapot Dome seismic survey.

You do not currently have access to this article.