The absorbing boundary condition plays an important role in seismic wave modeling. The perfectly matched layer (PML) boundary condition has been established as one of the most effective and prevalent absorbing boundary conditions. Among the existing PML-type conditions, the complex frequency shift (CFS) PML attracts considerable attention because it can handle the evanescent and grazing waves better. For solving the resultant CFS-PML equation in the time domain, one effective technique is to apply convolution operations, which forms the so-called convolutional PML (CPML). We have developed the corresponding CPML conditions with nonconstant grid compression parameter, and used its combination algorithms specifically with the symplectic partitioned Runge-Kutta and the nearly analytic SPRK methods for solving second-order seismic wave equations. This involves evaluating second-order spatial derivatives with respect to the complex stretching coordinates at the noninteger time layer. Meanwhile, two kinds of simplification algorithms are proposed to compute the composite convolutions terms contained therein.

You do not currently have access to this article.