ABSTRACT

Estimating the fluid property factor and density from amplitude-variation-with-offset (AVO) inversion is important for fluid identification and reservoir characterization. The fluid property factor can distinguish pore fluid in the reservoir and the density estimate aids in evaluating reservoir characteristics. However, if the scaling factor of the fluid property factor (the dry-rock VP/VS ratio) is chosen inappropriately, the fluid property factor is not only related to the pore fluid, but it also contains a contribution from the rock skeleton. On the other hand, even if the angle gathers include large angles (offsets), a three-parameter AVO inversion struggles to estimate an accurate density term without additional constraints. Thus, we have developed an equation to compute the dry-rock VP/VS ratio using only the P- and S-wave velocities and density of the saturated rock from well-logging data. This decouples the fluid property factor from lithology. We also developed a new inversion method to estimate the fluid property factor and density parameters, which takes full advantage of the high stability of a two-parameter AVO inversion. By testing on a portion of the Marmousi 2 model, we find that the fluid property factor calculated by the dry-rock VP/VS ratio obtained by our method relates to the pore-fluid property. Simultaneously, we test the AVO inversion method for estimating the fluid property factor and density parameters on synthetic data and analyze the feasibility and stability of the inversion. A field-data example indicates that the fluid property factor obtained by our method distinguishes the oil-charged sand channels and the water-wet sand channel from the well logs.

You do not currently have access to this article.