ABSTRACT

The inversion of prestack seismic data using amplitude variation with offset (AVO) has received increased attention in the past few decades because of its key role in estimating reservoir properties. AVO is mainly governed by the Zoeppritz equations, but traditional inversion techniques are based on various linear or quasilinear approximations to these nonlinear equations. We have developed an efficient algorithm for nonlinear AVO inversion of precritical reflections using the exact Zoeppritz equations in multichannel and multi-interface form for simultaneous estimation of the P-wave velocity, S-wave velocity, and density. The total variation constraint is used to overcome the ill-posedness while solving the forward nonlinear model and to preserve the sharpness of the interfaces in the parameter space. The optimization is based on a combination of Levenberg’s algorithm and the split Bregman iterative scheme, in which we have to refine the data and model parameters at each iteration. We refine the data via the original nonlinear equations, but we use the traditional cost-effective linearized AVO inversion to construct the Jacobian matrix and update the model. Numerical experiments show that this new iterative procedure is convergent and converges to a solution of the nonlinear problem. We determine the performance and optimality of our nonlinear inversion algorithm with various simulated and field seismic data sets.

You do not currently have access to this article.