The extraction of kinematic parameters from wave propagation through traveltimes is one of the great challenges in seismic data processing. In this context, we modify the common-reflection-surface (CRS) traveltime to improve its accuracy and also interpret its parameters via paraxial ray theory in an anisotropic medium obtaining information about the wavefront curvatures measured at surface. The proposed method consists of searching for the best stacking parameters that fit the data set followed by the extraction of kinematic information from the measured waves. Numerical tests show the effectiveness of our assumptions and that the results obtained in the fitting and parameter extraction in anisotropic media achieve better accuracy than conventional CRS.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.