Time-domain transient electromagnetic method (TEM) measurements sometimes exhibit a sign reversal in the secondary field during the off-time, which is usually attributed to the induced-polarization (IP) effect. In contrast with the conventional IP method, which uses a current source, TEM with an ungrounded transmitting loop operates using a pure voltage source, which is induced by the primary field switching on and off. We performed TEM measurements in a resistive survey area showing an IP effect, and we used a low-temperature superconducting quantum interference device (LT-SQUID) with sensitivity of 10  fT/Hz as a magnetic field sensor. A sign reversal in all of our measurements was observed; furthermore, the negative amplitude reached 10  pT. In-depth analysis with an extended version of a wire-filament circuit reveals that the large negative signal may be due to discharging of in-ground capacitance, an IP effect. The conduction response of the ground can be restored by subtracting the fitted discharging response (negative valued) from the observed data. To verify this operation, we compared TEM measurements with and without wire-loop targets, which can induce a conduction field with a known decay time constant during the off-time. The extracted conduction responses of the wire-loop targets match the expected ones well. This research reveals that the primary field switch-off must always be included when interpreting TEM data with sign reversal and an LT-SQUID may be a good alternative sensor for studying the IP effect in TEM.

You do not currently have access to this article.