ABSTRACT

Dimensional analysis was performed to understand the physics of ionic dispersion in reservoir rocks and to identify the factors influencing the cation exchange capacity (CEC) of these rocks. Dimensional analysis revealed the existence of a general relation independent of the unit system between two dimensionless groups denoted as the cationic dispersion number π1 and the conductivity number π2. The former group π1 stands for the ratio of the CEC to the electrical double-layer dispersion. The latter group π2 represents the ratio of the low-frequency ionic conductivity to the high-frequency electronic polarization. Complex dielectric permittivity measurements on 121 water-saturated sandstone and carbonate rock samples were used to validate the dimensionless groups. In retrospect, dimensional analysis was useful in identifying variables influencing the CEC of hydrocarbon rocks. In particular, these variables consist of rock porosity ϕ, specific surface area, and five other parameters of the Cole-Cole function, which describes the frequency dependence of the complex permittivity of rock samples in the range 10–1300 MHz. The Cole-Cole function parameters are τ, which is a characteristic relaxation time; α is the so-called spread parameter; σs is the real DC conductivity of water-saturated rocks; and ϵs and ϵ, which are the real numbers representing the static and the high-frequency dielectric permittivities of the water-saturated rock, respectively. A general regression neural network (GRNN) model was developed to predict the CEC of shaly sandstones and carbonate rocks as a function of the variables identified by the dimensional analysis as essential in predicting the CEC. The CEC prediction capability of the GRNN model has been tested with a blind data set, and it has been compared with the CEC prediction capability using a nonlinear regression model developed in this study and using a linear regression model available in the literature. The GRNN model outperformed both of these empirical models. With the GRNN model, it is possible to obtain reliable quantitative estimates of the CEC of shaly sandstone and carbonate rocks using nondestructive frequency-dependent dielectric permittivity measurements that are rapid, economic, and accurate. In return, accurate and fast estimates of the CEC are useful in many petroleum engineering applications. They can be used to identify clay types and can also be used to quantify the volume of hydrocarbon in shaly sands using well-log resistivity data. The results of this study represent a major advantage for formation evaluation, wellbore stability analysis, and designing stimulation jobs.

You do not currently have access to this article.