Three-dimensional elastic reverse time migration has been confronted with the problem of generating scalar images with vector S-waves. The underlying principle for solving this problem is to convert the vector S-waves into scalars. Previous methods were mainly focused on PS-imaging, but they usually cannot work properly on SP- and SS-cases. The complexity of SP- and SS-imaging arises from the fact that the incident S-wave has unpredictable relationship with the raypath plane. We have suggested that S-wave should be treated separately as SV- and SH-waves, which keep predictable relationships with the raypath plane. First, the elastic wavefield is separated into P- and S-waves using the Helmholtz decomposition. Then, we evaluate the normal direction of the raypath plane at each imaging grid. Next, we separate the vector S-wave obtained with curl operator into SH- and SV-waves, both of which are scalars. Finally, correlation imaging conditions are implemented to those scalar wave modes to produce scalar SV-P, SV-SV, and SH-SH images.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.