Typical microseismic data recorded by surface arrays are characterized by low signal-to-noise ratios (S/Ns) and highly nonstationary noise that make it difficult to detect small events. Currently, array or crosscorrelation-based approaches are used to enhance the S/N prior to processing. We have developed an alternative approach for S/N improvement and simultaneous detection of microseismic events. The proposed method is based on the synchrosqueezed continuous wavelet transform (SS-CWT) and custom thresholding of single-channel data. The SS-CWT allows for the adaptive filtering of time- and frequency-varying noise as well as offering an improvement in resolution over the conventional wavelet transform. Simultaneously, the algorithm incorporates a detection procedure that uses the thresholded wavelet coefficients and detects an arrival as a local maxima in a characteristic function. The algorithm was tested using a synthetic signal and field microseismic data, and our results have been compared with conventional denoising and detection methods. This technique can remove a large part of the noise from small-amplitudes signal and detect events as well as estimate onset time.

You do not currently have access to this article.