We have investigated the ability of low-frequency induction resistivity measurements to detect and appraise hydraulic fractures induced near vertical boreholes. Integral-equation-based simulations indicate that coplanar measurements can detect fractures when they are injected with electrically conductive proppant to increase their conductivity contrast with the shale background. Specifically, when a logging tool consisting of one transmitter and two receivers that are 1.2 and 1.5 m away is used to detect fractures with the effective electrical conductivity of 100  S/m in a homogeneous shale formation of 1/3  S/m conductivity, the measurements (1) can indicate the boundary of fractures intersecting with vertical boreholes by the signal spikes generated only when the tool enters/exits fractures, (2) can detect fractures as small as approximately 0.15 m and differentiate fractures up to approximately 10 m in width, (3) can detect fractures with height as small as 0.3 m, (4) can differentiate elliptical and rectangular fractures from each other if they exhibit the same width; e.g., they can discriminate if their widths are within approximately 0.4–10 m, and (5) are sensitive to the effective electrical conductivity of the fracture. A second logging tool consisting of one transmitter and two receivers that are 18 and 19.2 m away is found to be less useful in the detection and appraisal of hydraulic fractures induced near vertical boreholes.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.