ABSTRACT

We developed a method for joint inversion of seismic refraction and resistivity data, using sharp-boundary models with few layers (typically three). We demonstrated the usefulness of the approach via examples from near-surface case studies involving shallow groundwater exploration and geotechnical investigations, although it should also be applicable to other types of layered environments, e.g., sedimentary basins. In our model parameterization, the layer boundaries were common for the resistivity and velocity distributions. Within the layers, only lateral variations in the material parameters (resistivity and velocity) were allowed, and we assumed no correlation between these. The inversion was performed using a nonlinear least-squares algorithm, using lateral smoothing to the layer boundaries and to the materialparameters. Depending on the subsurface conditions, the smoothing can be applied either to the depth of the layer boundaries or to the layer thicknesses. The forward responses and Jacobian for refraction seismics were calculated through ray tracing. The resistivity computations were performed with finite differences and a cell-to-layer transform for the Fréchet derivatives. Our method performed well in synthetic tests, and in the case studies, the layer boundaries were in good agreement with in situ tests and seismic reflection data, although minimum-structure inversion generally has a better data fit due to more freedom to introduce model heterogeneity. We further found that our joint inversion approach can provide more accurate thickness estimates for seismic hidden layers.

You do not currently have access to this article.