Due to the nature of seismic inversion problems, there are multiple possible solutions that can equally fit the observed seismic data while diverging from the real subsurface model. Consequently, it is important to assess how inverse-impedance models are converging toward the real subsurface model. For this purpose, we evaluated a new methodology to combine the multidimensional scaling (MDS) technique with an iterative geostatistical elastic seismic inversion algorithm. The geostatistical inversion algorithm inverted partial angle stacks directly for acoustic and elastic impedance (AI and EI) models. It was based on a genetic algorithm in which the model perturbation at each iteration was performed recurring to stochastic sequential simulation. To assess the reliability and convergence of the inverted models at each step, the simulated models can be projected in a metric space computed by MDS. This projection allowed distinguishing similar from variable models and assessing the convergence of inverted models toward the real impedance ones. The geostatistical inversion results of a synthetic data set, in which the real AI and EI models are known, were plotted in this metric space along with the known impedance models. We applied the same principle to a real data set using a cross-validation technique. These examples revealed that the MDS is a valuable tool to evaluate the convergence of the inverse methodology and the impedance model variability among each iteration of the inversion process. Particularly for the geostatistical inversion algorithm we evaluated, it retrieves reliable impedance models while still producing a set of simulated models with considerable variability.

You do not currently have access to this article.