The spectral decomposition technique plays an important role in reservoir characterization, for which the time-frequency distribution method is essential. The deconvolutive short-time Fourier transform (DSTFT) method achieves a superior time-frequency resolution by applying a 2D deconvolution operation on the short-time Fourier transform (STFT) spectrogram. For seismic spectral decomposition, to reduce the computation burden caused by the 2D deconvolution operation in the DSTFT, the 2D STFT spectrogram is cropped into a smaller area, which includes the positive frequencies fallen in the seismic signal bandwidth only. In general, because the low-frequency components of a seismic signal are dominant, the removal of the negative frequencies may introduce a sharp edge at the zero frequency, which would produce artifacts in the DSTFT spectrogram. To avoid this problem, we used the analytic signal, which is obtained by applying the Hilbert transform on the original real seismic signal, to calculate the STFT spectrogram in our method. Synthetic and real seismic data examples were evaluated to demonstrate the performance of the proposed method.

You do not currently have access to this article.