ABSTRACT

The lack of the low-frequency information in field data prohibits the time- or frequency-domain waveform inversions from recovering large-scale background velocity models. On the other hand, Laplace-domain waveform inversion is less sensitive to the lack of the low frequencies than conventional inversions. In theory, frequency filtering of the seismic signal in the time domain is equivalent to a constant multiplication of the wavefield in the Laplace domain. Because the constant can be retrieved using the source estimation process, the frequency content of the seismic data does not affect the gradient direction of the Laplace-domain waveform inversion. We obtained inversion results of the frequency-filtered field data acquired in the Gulf of Mexico and two synthetic data sets obtained using a first-derivative Gaussian source wavelet and a single-frequency causal sine function. They demonstrated that Laplace-domain inversion yielded consistent results regardless of the frequency content within the seismic data.

You do not currently have access to this article.