ABSTRACT

Wireline logs were acquired in eight wells during China’s first gas hydrate drilling expedition (GMGS-1) in April–June of 2007. Well logs obtained from site SH3 indicated gas hydrate was present in the depth range of 195–206 m below seafloor with a maximum pore-space gas hydrate saturation, calculated from pore water freshening, of about 26%. Assuming gas hydrate is uniformly distributed in the sediments, resistivity calculations using Archie’s equation yielded hydrate-saturation trends similar to those from chloride concentrations. However, the measured compressional (P-wave) velocities decreased sharply at the depth between 194 and 199 mbsf, dropping as low as 1.3km/s, indicating the presence of free gas in the pore space, possibly caused by the dissociation of gas hydrate during drilling. Because surface seismic data acquired prior to drilling were not influenced by the in situ gas hydrate dissociation, surface seismic data could be used to identify the cause of the low P-wave velocity observed in the well log. To determine whether the low well-log P-wave velocity was caused by in situ free gas or by gas hydrate dissociation, synthetic seismograms were generated using the measured well-log P-wave velocity along with velocities calculated assuming both gas hydrate and free gas in the pore space. Comparing the surface seismic data with various synthetic seismograms suggested that low P-wave velocities were likely caused by the dissociation of in situ gas hydrate during drilling.

You do not currently have access to this article.