Downhole microseismic monitoring is a valuable tool in understanding the efficacy of hydraulic fracturing. Inverting for the moment tensor has gained increasing popularity in recent years as a way to understand the fracturing process. Previous studies utilize only part of the information in the waveforms, such as direct P- and S-wave amplitudes, and make far-field assumptions to determine the source mechanisms. The method is hindered in downhole monitoring, when only limited azimuthal coverage is available. In this study, we develop an approach to invert for complete moment tensor using full-waveform data recorded at a vertical borehole. We use the discrete wavenumber integration method to calculate full wavefields in the layered medium. By using synthetic data, we find that, at the near-field range, a stable, complete moment tensor can be retrieved by matching the waveforms without additional constraints. At the far-field range, we discover that the off-plane moment tensor component is poorly constrained by waveforms recorded at one well. Therefore, additional constraints must be introduced to retrieve the complete moment tensor. We study the inversion with three different types of constraints. For each constraint, we investigate the influence of velocity model errors, event mislocations, and data noise on the extracted source parameters by a Monte Carlo study. We test our method using a single well microseismic data set obtained during the hydraulic fracturing of the Bonner sands in East Texas. By imposing constraints on the fracture strike and dip range, we are able to retrieve the complete moment tensor for events in the far-field. Field results suggest that most events have a dominant double-couple component. The results also indicate the existence of a volumetric component in the moment tensor. The derived fracture plane orientation generally agrees with that derived from the multiple event location.

You do not currently have access to this article.