Pseudoacoustic anisotropic wave equations are simplified elastic wave equations obtained by setting the S-wave velocity to zero along the anisotropy axis of symmetry. These pseudoacoustic wave equations greatly reduce the computational cost of modeling and imaging compared to the full elastic wave equation while preserving P-wave kinematics very well. For this reason, they are widely used in reverse time migration (RTM) to account for anisotropic effects. One fundamental shortcoming of this pseudoacoustic approximation is that it only prevents S-wave propagation along the symmetry axis and not in other directions. This problem leads to the presence of unwanted S-waves in P-wave simulation results and brings artifacts into P-wave RTM images. More significantly, the pseudoacoustic wave equations become unstable for anisotropy parameters ϵ<δ and for heterogeneous models with highly varying dip and azimuth angles in tilted transversely isotropic (TTI) media. Pure acoustic anisotropic wave equations completely decouple the P-wave response from the elastic wavefield and naturally solve all the above-mentioned problems of the pseudoacoustic wave equations without significantly increasing the computational cost. In this work, we propose new pure acoustic TTI wave equations and compare them with the conventional coupled pseudoacoustic wave equations. Our equations can be directly solved using either the finite-difference method or the pseudospectral method. We give two approaches to derive these equations. One employs Taylor series expansion to approximate the pseudodifferential operator in the decoupled P-wave equation, and the other uses isotropic and elliptically anisotropic dispersion relations to reduce the temporal frequency order of the P-SV dispersion equation. We use several numerical examples to demonstrate that the newly derived pure acoustic wave equations produce highly accurate P-wave results, very close to results produced by coupled pseudoacoustic wave equations, but completely free from S-wave artifacts and instabilities.

You do not currently have access to this article.