ABSTRACT

We present a new strategy for efficient wave-equation migration-velocity analysis in complex geological settings. The proposed strategy has two main steps: simulating a new data set using an initial unfocused image and performing wavefield-based tomography using this data set. We demonstrated that the new data set can be synthesized by using generalized Born wavefield modeling for a specific target region where velocities are inaccurate. We also showed that the new data set can be much smaller than the original one because of the target-oriented modeling strategy, but it contains necessary velocity information for successful velocity analysis. These interesting features make this new data set suitable for target-oriented, fast and interactive velocity model-building. We demonstrate the performance of our method on both a synthetic data set and a field data set acquired from the Gulf of Mexico, where we update the subsalt velocity in a target-oriented fashion and obtain a subsalt image with improved continuities, signal-to-noise ratio and flattened angle-domain common-image gathers.

You do not currently have access to this article.