We have developed an alternative (new) method to produce common-image gathers in the incident-angle domain by calculating wavenumbers directly from the P-wave polarization rather than using the dominant wavenumber as the normal to the source wavefront. In isotropic acoustic media, the wave propagation direction can be directly calculated as the spatial gradient direction of the acoustic wavefield, which is parallel to the wavenumber direction (the normal to the wavefront). Instantaneous wavenumber, obtained via a novel Hilbert transform approach, is used to calculate the local normal to the reflectors in the migrated image. The local incident angle is produced as the difference between the propagation direction and the normal to the reflector. By reordering the migrated images (over all common-source gathers) with incident angle, common-image gathers are produced in the incident-angle domain. Instantaneous wavenumber takes the place of the normal to the reflector in the migrated image. P- and S-wave separations allow both PP and PS common-image gathers to be calculated in the angle domain. Unlike the space-shift image condition for calculating the common-image gather in angle domain, we use the crosscorrelation image condition, which is substantially more efficient. This is a direct method, and is less dependent on the data quality than the space-shift method. The concepts were successfully implemented and tested with 2D synthetic acoustic and elastic examples, including a complicated (Marmousi2) model that illustrates effects of multipathing in angle-domain common-image gathers.

You do not currently have access to this article.