ABSTRACT

Marine wide-azimuth data in the Gulf of Mexico, reverse time migration (RTM) and anisotropic velocity models have led to significant improvement in subsalt imaging. However, imaging of some steeply dipping subsalt targets such as three-way closures against salt is still difficult. This can be attributed to poor illumination and noise contaminations from various shot records. We apply the visibility analysis method that quantitatively determines which shot records contribute most energy on a specific subsalt prospect area. As a result we selectively migrate only those shot records thereby reducing noise contamination from low energy contributing shot records, improving signal continuity and better trap definition in the target area. Like conventional illumination analysis, the computation takes into account the overburden velocity distribution, acquisition geometry, target reflectivity and dip angle. We used 2D and 3D synthetic data examples to test the concepts and applicability of the method. A Gulf of Mexico case study example using wide-azimuth data demonstrated its use in an industry scale project. It is shown that for the particular 60°–65° subsalt target of interest only 30% of the wide-azimuth shot records are sufficient for the imaging. By reducing noise, the image results show significant improvement in the subsalt area compared to the full shot record RTM volume.

You do not currently have access to this article.