ABSTRACT

Kirchhoff-type prestack depth migration is the method most popular for outputting offset gathers for velocity-model updating because of its flexibility and efficiency. However, conventional implementations of Kirchhoff migration use only single arrivals. This limits its ability to image complex structures such as subsalt areas. We use the beam methodology to develop a multiarrival Kirchhoff beam migration. The theory and algorithm of our beam migration are analogs to Gaussian beam migration, but we focus on attaining kinematic accuracy and implementation efficiency. The input wavefield of every common offset panel is decomposed into local plane waves at beam centers on the acquisition surface by local slant stacking. Each plane wave contributes a potential single-arrival in Kirchhoff migration. In this way, our method is able to handle multiarrivals caused by model complexity and, therefore, to overcome the limitation of conventional single-arrival Kirchhoff migration. The choice of the width of the beam is critical to the implementation of beam migration. We provide a formula for optimal beam width that achieves both accuracy and efficiency when the velocity model is reasonably smooth. The resulting structural imaging in subsalt and other structurally complex areas is of better quality than that from single-arrival Kirchhoff migration.

You do not currently have access to this article.