Abstract

Reverse-time migration (RTM) in 2.5D offers an alternative to improve resolution and amplitude when imaging 2D seismic data. Wave propagation in 2.5D assumes translational invariance of the velocity model. Under this assumption, we implement a finite-difference (FD) modeling algorithm in the mixed time-space/wavenumber domain to simulate the velocity and pressure fields for acoustic wave propagation and apply it in RTM. The 2.5D FD algorithm is truly parallel, allowing an efficient implementation in clusters. Storage and computing time requirements are strongly reduced compared to a full 3D FD simulation of the wave propagation. This feature makes 2.5D RTM much more efficient than 3D RTM, while achieving improved modeling of 3D geometrical spreading and phase properties of the seismic waveform in comparison to 2D RTM. Together with an imaging condition that compensates for uneven illumination and/or the obliquity factor, this allows recover of amplitudes proportional to the earth's reflectivity. Numerical experiments using synthetic data demonstrate the better resolution and improved amplitude recovery of 2.5D RTM relative to 2D RTM.

You do not currently have access to this article.