Abstract

We suggest two different mechanisms for generation of high-frequency signals from seismic sources: one type that we interpret as being caused by high-frequency effects close to and within each individual air gun and another type caused by an effect that we refer to as ghost cavitation. The former one is found to have a steep decreasing amplitude trend with frequency, while the latter has a close to 1/f attenuation for frequencies above 1 kHz. A thorough understanding of the effects is of significant importance to quantify and estimate any environmental impact of marine seismic air-gun arrays. The proposed ghost-cavitation mechanism needs further experimental testing. However, given that the suggested model is proven, we think it is possible to attenuate the high-frequency noise generated by compact air-gun arrays by increasing the areal extent of the gun array.

You do not currently have access to this article.