We have developed an inversion algorithm for jointly inverting controlled-source electromagnetic (CSEM) data and magnetotelluric (MT) data. It is well known that CSEM and MT data provide complementary information about the subsurface resistivity distribution; hence, it is useful to derive earth resistivity models that simultaneously and consistently fit both data sets. Because we are dealing with a large-scale computational problem, one usually uses an iterative technique in which a predefined cost function is optimized. One of the issues of this simultaneous joint inversion approach is how to assign the relative weights on the CSEM and MT data in constructing the cost function. We propose a multiplicative cost function instead of the traditional additive one. This function does not require an a priori choice of the relative weights between these two data sets. It will adaptively put CSEM and MT data on equal footing in the inversion process. The inversion is accomplished with a regularized Gauss-Newton minimization scheme where the model parameters are forced to lie within their upper and lower bounds by a nonlinear transformation procedure. We use a line search scheme to enforce a reduction of the cost function at each iteration. We tested our joint inversion approach on synthetic and field data.

You do not currently have access to this article.