The acoustic wave equation has been widely used for the modeling and reverse time migration of seismic data. Numerical implementation of this equation via finite-difference techniques has established itself as a valuable approach and has long been a favored choice in the industry. To ensure quality results, accurate approximations are required for spatial and time derivatives. Traditionally, they are achieved numerically by using either relatively very fine computation grids or very long finite-difference operators. Otherwise, the numerical error, known as numerical dispersion, is present in the data and contaminates the signals. However, either approach will result in a considerable increase in the computational cost. A simple and computationally low-cost modification to the standard acoustic wave equation is presented to suppress numerical dispersion. This dispersion attenuator is one analogy of the antialiasing operator widely applied in Kirchhoff migration. When the new wave equation is solved numerically using finite-difference schemes, numerical dispersion in the original wave equation is attenuated significantly, leading to a much more accurate finite-difference scheme with little additional computational cost. Numerical tests on both synthetic and field data sets in both two and three dimensions demonstrate that the optimized wave equation dramatically improves the image quality by successfully attenuating dispersive noise. The adaptive application of this new wave equation only increases the computational cost slightly.

You do not currently have access to this article.