Abstract

Passive seismic low-frequency (from approximately 16Hz) data have been acquired at several locations around the world. Spectra calculated from these data, acquired over fields with known hydrocarbon accumulations, show common spectral anomalies. Verification of whether these anomalies are common to only a few, many, or all hydrocarbon reservoirs can be provided only if more and detailed results are reported. An extensive survey was carried out above a tight gas reservoir and an adjacent exploration area in Mexico. Data from several hundred stations with three-component broadband seismometers distributed over approximately 200km2 were used for the analysis. Severalhydrocarbon reservoir-related microtremor attributes were calculated, and mapped attributes were compared with known gas intervals, with good agreement. Wells drilled after the survey confirm a predicted high hydrocarbon potential in the exploration area. A preliminary model was developed to explain the source mechanism of those microtremors. Poroelastic effects caused by wave-induced fluid flow and oscillations of different fluid phases are significant processes in the low-frequency range that can modify the omnipresent seismic background spectrum. These processes only occur in partially saturated rocks. We assume that hydrocarbon reservoirs are partially saturated, whereas the surrounding rocks are fully saturated. Our real data observations are consistent with this conceptual model.

You do not currently have access to this article.