Stereotomography was proposed 10years ago for estimating velocity macromodels from seismic reflection data. Initially, the goal was to retain the advantages of standard traveltime tomography while providing an alternative to difficult interpretive traveltime picking. Stereotomography relies on the concept of locally coherent events characterized by their local slopes in the prestack data cube. Currently, stereotomography has been developed in two and three dimensions, and precious experience has been gained. The expected advantages have been demonstrated fully (in particular, the efficiency and reliability of the semiautomatic stereotomographic picking strategies), and further studies have increased the method's potential and flexibility. For example, stereotomographic picking can now be done in either the prestack or poststack domain, in either the time (migrated or unmigrated) or depth domain. It appears that the theoretical frame of stereotomography can reconcile, very satisfactorily and efficiently, most methods proposed for velocity-macromodel estimation for depth imaging. Moreover, an extension of the method to full-waveform inversion already exists and opens the way for very interesting developments.

You do not currently have access to this article.