Abstract

Recent applications of 2D and 3D turning-ray tomography show that near-surface velocities are important for structural imaging and reservoir characterization. For structural imaging, we used turning-ray tomography to estimate the near-surface velocities for static corrections followed by prestack time migration and the near-surface velocities for prestack depth migration. Two-dimensional acoustic finite-difference modeling illustrates that wave-equation prestack depth migration is very sensitive to the near-surface velocities. Field data demonstrate that turning-ray tomography followed by prestack time migration helps to produce superior images in complex geologic settings. When the near-surface velocity model is integrated into a background velocity model for prestack depth migration, we find that wave propagation is very sensitive to the velocities immediately below the topography. For shallow-reservoir characterization, we developed and applied azimuthal turning-ray tomography to investigate observed apparent azimuthal-traveltime variations, using a wide-azimuth land seismic survey from a heavy-oil field at Surmont, Canada. We found that the apparent azimuthal velocity variations are not necessarily related to azimuthal anisotropy, or horizontal transverse isotropy (HTI), induced by the stress field or fractures. Near-surface heterogeneity and the acquisition footprint also could result in apparent azimuthal variations.

You do not currently have access to this article.