The structural approach to joint inversion, entailing common boundaries or gradients, offers a flexible and effective way to invert diverse types of surface-based and/or crosshole geophysical data. The cross-gradients function has been introduced as a means to construct models in which spatial changes in two distinct physical-property models are parallel or antiparallel. Inversion methods that use such structural constraints also provide estimates of nonlinear and nonunique field-scale relationships between model parameters. Here, we jointly invert crosshole radar and seismic traveltimes for structurally similar models using an iterative nonlinear traveltime tomography algorithm. Application of the inversion scheme to synthetic data demonstrates that it better resolves lithologic boundaries than the individual inversions alone. Tests of the scheme on GPR and seismic data acquired within a shallow aquifer illustrate that the resultant models have improved correlations with flowmeter data in comparison with models based on individual inversions. The highest correlation with the flowmeter data is obtained when the joint inversion is combined with a stochastic regularization operator and the vertical integral scale is estimated from the flowmeter data. Point-spread functions show that the most significant resolution improvements offered by the joint inversion are in the horizontal direction.

You do not currently have access to this article.