Abstract

The Gray Fossil Site, Washington County, Tennessee, has produced a remarkable Mio-Pliocene fauna and flora with no known correlative in the Appalachian region. After its discovery in 2000, a series of auger holes were drilled by the Tennessee Department of Transportation (TDOT) to determine the areal extent of the site. Drilling indicated that the fossils occurred in fill material within a paleokarst basin, but the distribution of boreholes does not permit details of sinkhole topography, and therefore its formation and fill history, to be adequately resolved. To better image the sinkhole basin, a high-resolution gravity survey, which included 1104 gravity measurement stations, was conducted. These data were used to create complete Bouguer and residual gravity anomaly maps and a 3D density model via inversionmethods. The residual gravity anomaly map compares favorably with 29 TDOT auger holes drilled to basement, but contains significantly more detail. The residual gravity anomaly map reveals the presence of seven separate sinkholes. However, 3D inverse modeling constrained by drill-hole depths and density data indicates that there are 11 separate sinkholes formed within the Knox Group carbonates. These sinkholes, which range between 20 and 44m in depth, are aligned along northwest and northeast trending linear features that correlate to structural features formed during the Appalachian orogenies. It is possible that the overall sinkhole basin formed as the result of partial coalescence of multiple sinkhole structures controlled by a joint system and that the sinkholes then acted as a natural trap for the Gray Fossil Site fauna and flora.

You do not currently have access to this article.