The perfectly matched layer (PML) absorbing boundary condition has proven to be very efficient from a numerical point of view for the elastic wave equation to absorb both body waves with nongrazing incidence and surface waves. However, at grazing incidence the classical discrete PML method suffers from large spurious reflections that make it less efficient for instance in the case of very thin mesh slices, in the case of sources located close to the edge of the mesh, and/or in the case of receivers located at very large offset. We demonstrate how to improve the PML at grazing incidence for the differential seismic wave equation based on an unsplit convolution technique. The improved PML has a cost that is similar in terms of memory storage to that of the classical PML. We illustrate the efficiency of this improved convolutional PML based on numerical benchmarks using a finite-difference method on a thin mesh slice for an isotropic material and show that results are significantly improved compared with the classical PML technique. We also show that, as the classical PML, the convolutional technique is intrinsically unstable in the case of some anisotropic materials.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.