Abstract

We aim to develop a quantitative method for recalibration of historic helicopter electromagnetic data sets. Recent research has shown that frequency-domain helicopter electromagnetic data collected over a conductive half-space such as calm seawater can be used to correct system calibration errors. However, most historic surveys consist only of data collected over land, where the conductive half-space assumption is rarely justified. We estimate the required recalibration parameters by analyzing systematic misfits in the inversion of statistically chosen measures of historic data. Our method requires the identification, within the survey area, of a zone of conductive responses that are reasonably uniform. From this zone, a set of altitude-corrected median responses are estimated. These are inverted using geologically specifiedconstraints to obtain a best-fit layered earth model. Systematic inconsistencies between the median measured altitude and the inverted depth to surface are attributed to altitude error. Remaining frequency-dependent fitting errors are assumed to be the calibration errors. We tested the method with partial success on helicopter electromagnetic data sets collected over uniform deep sediments where seawater data were also available and two different inland surveys over multiple lithologies in one general area. At high frequencies, our method works reliably. Recalibration of low-frequency data is not possible if the area used as a reference consists of moderate or poor conductors. In this case, data amplitudes are small and are greatly affected by imperfect drift and magnetic susceptibility corrections. Historic helicopter electromagnetic data may require amplitude rescaling up to 20%–30%, with phase shifts of up to 3°.

You do not currently have access to this article.