A number of issues impact electrical resistivity tomography (ERT) inversions: how ERT measurements sample the subsurface, the nature of subsurface heterogeneity, the geometry selected for data collection, the choice of data-misfit criteria, and regularization of the inverse problem. Lab-scale rock-physics models, typically used to estimate solute concentration from ERT, do not accommodate or account for these issues and therefore produce inaccurate geophysical estimates of solute concentrations. In contrast, the influence of measurement sensitivity and inversion artifacts can be captured by pixel-based rock-physics relationships, determined using numerical analogs that recreate the field-scale ERT experiment based on flow and transport modeling and a priori data. In the 2D synthetic example presented here, where ERT is used to monitor the transport of a saline tracer through the subsurface, improved estimates of concentration are obtained when field-scale rock-physics relationships based on numerical analogs are used.

You do not currently have access to this article.