Abstract

To investigate the potential role that indigenous micro-organisms and microbial processes may play in altering low-frequency electrical properties, induced-polarization (IP) measurements in the frequency range of 0.1 to 1000 Hz were acquired from sediment samples retrieved from a site contaminated by hydrocarbon undergoing intrinsic biodegradation. Increased imaginary conductivity and phase were observed for samples from the smear zone (contaminated with residual-phase hydrocarbon), exceeding values obtained for samples contaminated with diss-olved-phase hydrocarbons, and in turn, exceeding values obtained for uncontaminated samples. Real conductivity, although generally elevated for samples from the smear zone, did not show a strong correlation with contamination. Controlled experiments on uncontaminated samples from the field site indicate that variations in surface area, elec-trolytic conductivity, and water content across the site can-not account for the high imaginary conductivity observed within the smear zone.

We suggest that microbial processes may be responsible for the enhanced IP response observed at contaminated lo-cations. Scanning electron microscopy and IP measurements during acid leaching indicate that etched pits on mineral surfaces — caused by the production of organic acids or formed during microbial colonization of these surfaces — are not the cause of the IP enhancement. Rather, we postulate that the accumulation of microbial cells (biofilms) with high surface area at the mineral-electrolyte interface generates the IP response. These findings illustrate the potential use of electrical measurements to noninvasively monitor microbial activity at sites undergoing natural hydrocarbon degradation.

You do not currently have access to this article.