We consider multiple transmitted, reflected, and converted qP-qSV-waves or multiple transmitted and reflected SH-waves in a horizontally layered medium that is transversely isotropic with a vertical symmetry axis (VTI). Traveltime and offset (horizontal distance) between a source and receiver, not necessarily in the same layer, are expressed as functions of horizontal slowness. These functions are given in terms of a Taylor series in slowness in exactly the same form as for a layered isotropic medium. The coefficients depend on the parameters of the anisotropic layers through which the wave has passed, and there is no weak anisotropy assumption.

Using classical formulas, the traveltime or traveltime squared can then be expressed as a Taylor series in even powers of offset. These Taylor series give rise to a shifted hyperbola traveltime approximation and a new continued-fraction approximation, described by four parameters that match the Taylor series up to the sixth power in offset. Further approximations give several simplified continued-fraction approximations, all of which depend on three parameters: zero-offset traveltime, NMO velocity, and a heterogeneity coefficient. The approximations break down when there is a cusp in the group velocity for the qSV-wave.

Numerical studies indicate that approximations of traveltime squared are generally better than those for traveltime. A new continued-fraction approximation that depends on three parameters is more accurate than the commonly used continued-fraction approximation and the shifted hyperbola.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.