We present a method of reflection tomography for anisotropic elastic parameters from PP and PS reflection seismic data. The method is based upon the differential semblance misfit functional in scattering angle and azimuth (DSA) acting on common-image-point gathers (CIGs) to find fitting velocity models. The CIGs are amplitude corrected using a generalized Radon transform applied to the data. Depth consistency between the PP and PS images is enforced by penalizing any mis-tie between imaged key reflectors. The mis-tie is evaluated by means of map migration-demigration applied to the geometric information (times and slopes) contained in the data. In our implementation, we simplify the codepthing approach to zero-scattering-angle data only. The resulting measure is incorporated as a regularization in the DSA misfit functional. We then resort to an optimization procedure, restricting ourselves to transversely isotropic (TI) velocity models. In principle, depending on the available surface-offset range and orientation of reflectors in the subsurface, by combining the DSA with codepthing, the anisotropic parameters for TI models can be determined, provided the orientation of the symmetry axis is known. A proposed strategy is applied to an ocean-bottom-seismic field data set from the North Sea.

You do not currently have access to this article.