Within the context of seismic wave propagation, fractures can be described as thin layers or linear-slip interfaces. In this paper, numerical simulations of elastic wave propagation in a medium with a single fracture represented by these two models are performed by 2D finite-difference codes: a variable-grid isotropic code for the thin-layer model and a regular-grid anisotropic code for the linear-slip model. Numerical results show excellent agreement between the two models for wavefields away from the fracture; the only discrepancy between the two is the presence of a slow wave traveling primarily within the fracture fluid of the thin-layer model. The comparison of the computational cost shows that modeling of the linear-slip model is more efficient than that of the thin-layer model. This study demonstrates that the linear-slip model is an efficient and accurate modeling approach for the remote seismic characterization of fractures.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.