An important problem in the interpretation of magnetic data is quantifying the source parameters that describe the anomalous structure. We present a new method that uses various combinations of the local wavenumbers for estimating the depth and shape (structural index) of the structure. Because the estimates are derived from third derivatives of the magnetic data, they are noisy. However, there are multiple ways of calculating the depth and index, and these solutions can be averaged to give a stable estimate. Even so, a synthetic test shows that the results are erratic away from the locations where the analytic-signal amplitude is large. Hence, when we generate images of the depth and structural index, we make the results most visible where the analytic-signal amplitude is large and less visible where the signal is small. The advantage of the method is that estimates can be obtained at all locations on a profile and used to generate continuous profiles or images of the source parameters. This can be used to help identify the locations where interference might be corrupting the results.

The structural index image can be used to determine the most appropriate type of model for an area. Assuming this model, it is possible to calculate the depth that would be consistent with the model and the data. Knowing both the depth and model, the analytic-signal amplitude can be converted to apparent susceptibility. If a vertical-contact model is assumed, the susceptibility contrast across the contact can be imaged. For the thin-sheet and horizontal-cylinder models, we can image the susceptibility-thickness and susceptibility-area products, respectively.

You do not currently have access to this article.