Abstract

The theory of iterative surface-related multiple elimination holds for 2D as well as 3D wavefields. The 3D prediction of surface multiples, however, requires a dense and extended distribution of sources and receivers at the surface. Since current 3D marine acquisition geometries are very sparsely sampled in the crossline direction, the direct Fresnel summation of the multiple contributions, calculated for those surface positions at which a source and a receiver are present, cannot be applied without introducing severe aliasing effects. In this newly proposed method, the regular Fresnel summation is applied to the contributions in the densely sampled inline direction, but the crossline Fresnel summation is replaced with a sparse parametric inversion. With this procedure, 3D multiples can be predicted using the available input data. The proposed method is demonstrated on a 3D synthetic data set as well as on a 3D marine data set from offshore Norway.

You do not currently have access to this article.