Stereotomography is a new velocity estimation method. This tomographic approach aims at retrieving subsurface velocities from prestack seismic data. In addition to traveltimes, the slope of locally coherent events are picked simultaneously in common offset, common source, common receiver, and common midpoint gathers. As the picking is realized on locally coherent events, they do not need to be interpreted in terms of reflection on given interfaces, but may represent diffractions or reflections from anywhere in the image. In the high-frequency approximation, each one of these events corresponds to a ray trajectory in the subsurface. Stereotomography consists of picking and analyzing these events to update both the associated ray paths and velocity model. In this paper, we describe the implementation of two critical features needed to put stereotomography into practice: an automatic picking tool and a robust multiscale iterative inversion technique. Applications to 2D reflection seismic are presented on synthetic data and on a 2D line extracted from a 3D towed streamer survey shot in West Africa for TotalFinaElf. The examples demonstrate that the method requires only minor human intervention and rapidly converges to a geologically plausible velocity model in these two very different and complex velocity regimes. The quality of the velocity models is verified by prestack depth migration results.

You do not currently have access to this article.